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1. Introduction 

The most important design goal for an animation system is to not constrain 

the animator’s imagination. The most serious problem with any animation 

system is the mass of detail required to produce animation. 

We don’t want a system to force a paradigm on the animator. In particular, 

it can’t require physical laws, although it must be able to supply them when 

needed. A brief review of classical animation shows this point: although Wily 

Coyote falls in a fashion that may be related to d =1 /2a t2 ,  it usually does 

not happen until he has been walking on air for a few seconds (the “Cartoon 

Laws of Motion”). 

No matter what method is used to describe motion, there is a large amount 

of data that needs to  be specified. A system that provides only one type of 

movement will not provide the needed flexibility. As Wilhelms [23] points 

out, with a kinematics description the animator must experiment until the 
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motion looks right, and with a dynamics description the animator must 

experiment until the desired motion comes out. 

The mathematics for computer animation and the techniques for building 

graphics software have been well explored. Higher level descriptions of ani- 

mation will be the research area in the future. The last two decades have 

demonstrated that computer graphics can display animations with adequate 

form; now it’s time to put some effort into constructing animations with con- 

tent. Recent computer animations [2, 6,11, 21, 221 show a definite move in 

this direction. This trend towards character animation will tax the capabili- 

ties of computer animation systems but produce more interesting animation. 

2. Design points for an animation system 

A topic related to the design parameters for an animation system is 

classification of animation systems, a subject treated by Zeltzer [25] and 

Gomez [9]. Both of these schemes rely on the motion specification mechan- 

ism for categorization. Qualifiers are also employed to  describe practical 

aspects of the system, such as playback. 

2.1. Interactive 

An animation system should be interactive. It’s hard to design pictures 

without looking at a picture of what’s being designed and being able to 

change the picture and see directly what happens. 
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2.2. Speed 

An ideal animation system would draw fancy color pictures in real time. 

Since this is impractical for the time being, the question becomes one of 

how much playback can be provided quickly. An acceptable answer is 

that as soon as the animator has finished adjusting something in the 

script, he can push a button and have the animation play back in real 

time. A few seconds delay for precalculation is acceptable; non real-time 

playback, however, is not. Whereas an animator can find something else 

to think about for the ten seconds or one minute of precalculation, it’s 

difficult to appreciate motion when it is proceeding at  the wrong rate. 

This is the way things used to be; cel animators wouldn’t see any motion 

until perhaps the next day. In this day and age that’s not a valid reason; 

a valid reason would be something like “this motion needs two minutes of 

Cray time to  evaluate.” 

The problem is magnified on a multiprogramming system, where in addi- 

tion to playing the animation at  the wrong rate, the system will swap the 

animation system in and out of the execution queue, causing jerks in the 

animation. 

We will call an animation system that provides acceptable playback an 

online system and designate it as being nice. With current technology, an 

online system will most likely provide a wireframe display. 
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2.5. Flexibility 

The system shouldn’t force the animator to use mechanisms she may not 

want to use. Sometimes an animator may want a linear spline, even with 

its attendant lack of continuity in the derivatives. As mentioned in the 

introduction, sometimes physics may be wanted and sometimes not. The 

point about flexibility is that the system should not force any motion 

mechanisms on the animator. 

The subjects of splining and splines for computer animation have been 

discussed adequately in the literature, so these notes won’t mention them 

other than in the description of the twizt implementation later. 

A useful idea from the 8cn - assmblr system [4] is the ability to substitute 

module names while interacting with the system. This loose coupling 

makes it easy for the animator to switch data resolution, change lighting 

algorithm, change anti-aliasing algorithm, change screen resolution, etc. 

Given this capability for changing parameters at  whim and (relatively) 

immediately obtaining the new result, the animator is given extra ranges 

of expressive power. When it’s trivial to change the way a picture is com- 

puted, the user will try those different ways, resulting in effects that may 

otherwise not have been attempted. 
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2.4. Extensibility 

The basic reason for extensibility is that no matter what facilities the sys- 

tem provides, a need will arise for something else. This is especially true 

in a research and commercial production environments. Thus the system 

should include facilities for reconfiguring existing mechanisms or including 

new ones; it should be extensible. 

An example of this can be found in the emacs editor. It provides a wealth 

of text operation functions, and the user can write subroutines using these 

operations to extend the power of the editor. A simple example would be 

a subroutine that transposes two lines; a more complex one would be an 

interactive e-mail handling repertoire. Once the user has written or bor- 

rowed such a routine, it is as easy to use as a built in emacs command, in 

addition to having the same interface. The point is that the user has the 

capability of modifying the system to his own desires without rewriting 

the program. 

One way of using this extensibility is to have objects that carry their own 

behavior with them [13]. Humans, for example, can bend their elbows 

only so far. It would be nice to include this fact in the “human” abstrac- 

tion. However, it would also be nice to  be able to define a new type, say 

“human?,” that has different or no restrictions on elbow movement. 

This notion of dynamic use of the system means the animator can define 

his own movement criteria and use them in the animation system. This in 
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turn means the animator is effectively reconfiguring the system to his own 

needs for that animation. 

In this context, object oriented programming is a generalization of exten- 

sibility. The advantages of object oriented programming extend them- 

selves to any structured system, including one where the constituents are 

actors and motions rather than lines of source code. 

Dynamic components require a rather sophisticated operating system. In 

particular, a program must be able to load code segments dynamically. 

Only LISP or Cedar [18] have this notion built into their design. Some 

efforts have been made towards bringing this attractive capability to 

UNIX, e.g. GEM [14]. 

2.5. Usability 

The system should not be a keyframe system. Originally, a keyframe sys- 

tem was one which used key frames to control motion. It was designed to 

facilitate the way hand animation is built [20]. The key frames would be 

drawn by the animator and the system would interpolate between them. 

A number of such systems have been implemented [l, 31. 

Recently, “keyframe” has been used in a more general sense to mean a 

system that interpolates between values, whether or not there actually are 

key frames. These are what Zeltzer calls guiding systems [25], indicating 

that the animator must explicitly describe the animation to  be performed. 
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The system will provide splines to smooth out the animator’s input. 

The use of the terms guiding and keg parameter is strongly preferred over 

keyftame, since the latter term implies there are key frames, in contrast to 

the first two, which do not. Since contemporary animation systems gen- 

erally do not work with key frames, this accuracy is desirable. 

Finally, the system shouldn’t be an extension of a programming language. 

This forces the animator into a paradigm which has nothing to do with 

images. It’s not necessary (neither is it prohibited) for an animator to 

know that a for loop is necessary to transform the vertices in a database, 

or that cosn is often used in illumination calculations. Furthermore, 

there is a strong possibility that the detail of dealing with a programming 

language will distract the animator from the animation. 

2.6. Habitability 

There are a number of other necessary features in an animation system 

contributing to its habitability, or how nice it is to work in the system. 

Examples are guarded exit (do not exit unless the script is saved or the 

user is sure); interactive exception handling (e.g. “File exists - do you 

want to overwrite it?”); help facilities. Defanti defined many habitability 

and extensibility requirements in GRASS [5]. 
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2.7. Overall 

A point not previously mentioned is that it may require more than one 

system to perform all these functions, with some sort of hierarchical 

arrangement between them [25]. This approach would provide different 

levels of complexity and the corresponding different levels of addressable 

detail. 

3. Event Driven Animation 

Event driven animation is an abstraction for describing animation. Rather 

than describing a specific animation technique, it describes a methodology for 

describing animation. It is not constrained to describing motion, but it is 

useful for constructing all aspects of an animation. It can be generalized to 

any level, thereby providing appropriate degrees of abstraction. A small 

scale event driven animation system can be implemented easily. 

A fundamental concept when dealing with event driven animation is the idea 

that animation is not limited to moving things around; but also moving the 

color or the shape or the rate of change of the animation variables. The con- 

cept of event driven animation unifies all the different aspects of making an 

animation. The idea is that all display functions can be treated the same so 

that operations can be performed on any display function as easily as on any 

other, freeing the animator from having to use method m l  to deal with 

display function F, and method m2 to deal with display function F,. For 
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example, it’s not acceptable for the animator to have to use key joint angles 

for arm motion and have to use inverse kinematics for leg motion. 

Another way of putting this is that animation is not just getting from point 

A to point B using points C and D to help control a cubic spline; it’s dealing 

with every aspect of making a picture and making the picture move. Thus 

the mechanisms for performing operations on anything should be similar. 

This point can be qualified to a degree. It doesn’t make sense to apply vector 

operations to  a scalar value. However, the system should recognize the prob- 

lem and deal with it, perhaps translating the request to something reason- 

able. Or the animator could have the options of configuring the system to 

attempt a translation, ignore the problem, or complain and ask for instruc- 

t ions. 

3.1. The Display Function 

Consider some arbitrary display function: given some input parameters 

telling it how to operate, it will take data, process it, and output new 

values contributing to the picture. Common display functions include the 

basic geometric transforms such as translation, orientation, and scaling. 

Other display functions include color, transparency, surface geometry, 

whether or not to display, joint angles, etc. 

It’s readily apparent that the datatype required depends on the display 

function: color is a 3-vector, transparency is usually a scalar, orientation 
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is a 3x3 matrix, surface geometry is a dataset, whether or not to  be 

displayed is a Boolean value, and a methodology for calculating a value is 

a procedure pointer. When one of these is used to control a display func- 

tion, we will call it a control value. 

Mentally we can translate any datatype into a vector of appropriate 

scalar values. Thus a matrix becomes a 9-vector of real numbers, a 

dataset becomes a matrix of 3-vectors which is in turn a 3xn vector, a 

display flag becomes a 1-vector of Boolean values, and a procedure pointer 

is a pointer valued 1-vector. This point is academic, however, and is men- 

tioned only for formality. 

3.2. Definitions 

The animation process requires specification of values for every frame of 

time for every display function implemented in the graphics system. For 

an arbitrary display function F we have a set of control values for it, 8i. 

To each of these control value vectors we attach the time at which it is to 

be used; this construction of the control value and the time we call an 

event. The list of events describing the activity of F over the animation 

we call a track. The track is implicitly sorted in ascending order by event 

time; sorting should be implemented by the underlying software so the 

user doesn’t have to  do it. 
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Practically, it makes more sense to store events only when an input value 

for F changes, and use a splining technique to generate the inbetween 

values. Thus interpolation information must also be stored in the event: 

acceleration/deceleration information, splining method, etc .  This will be 

discus'sed momentarily. 

To access values within tracks, we can define an abstract function 

E (objects ,f ,t ) 

where objects indicates a class of objects, f is the display function, and t is 

the time. E will return a value appropriate for that display function. The 

animation controller will have to evaluate the appropriate tracks to calcu- 

late that return value vector. The number of events necessary to do this 

will depend on the display function and the complexity of the splining 

method, e.g.  a cubic spline requires four events to work with; a Boolean 

function requires only the closest preceding event. 

Timing in an animation can be changed by changing the frame numbers 

in events. Track segments can be moved to change the time at  which their 

animation occurs. Track segments can also be multiplied by a factor to 

expand or compress their length. 

3.3. Interpolation 

We begin to see a relation between events and curve generation. In fact, 

the values contained in the events are control points, the frame number is 
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the parameter of interpolation, and the animation for that display func- 

tion is the result of the generated spline. Here the term control values is 

better then control points, to emphasize the fact that  event values have 

arbitrary types, including some which cannot be splined. 

There are a plethora of techniques for interpolating or approximating 

curves. Track animation relies on patched curves. Briefly, patching refers 

to the process of “gluing” together splined curves end to end, or surface 

elements side to  side. Continuity in the derivatives across the boundaries, 

although desirable, is not required. Different interpolation functions can 

be used to  achieve different patches, although the animator can certainly 

specify a single splining function for the entire duration of the track. 

We must assume a track is at least piecewise continuous; otherwise F will 

be undefined at certain frames, a potential source of serious problems. We 

would also like the first derivative with respect to  time, d F/dt , or F 

(velocity) to be continuous; this will prevent sudden jumps in the output 

values from F. If the second derivative d 2 F / d t 2 ,  or F (acceleration) is 

also continuous, this will prevent sudden jumps in the rate of change of 

the input values to F. If both constraints are met then the output of F 

will be smooth and will change smoothly. See also Smith [17]. 

In order t o  calculate a frame in an animation, all tracks are evaluated for 

the given time. The collection of activity on all tracks inherently gen- 

erates the animation. 
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Note that a change in interpolation functions is a change in value, and 

events can exist just for this purpose. Changes in velocity are also events, 

;.e. specifying values for d F/dt instead of F itself. 

Keep in mind that interpolation schemes apply to any track, not just posi- 

tion. There is no reason why B-splines can’t be used on color or tran- 

sparency information; for continuity purposes, it’s better if they are. 

3.4. Generality 

The level of abstraction for any track is tied to the intelligence of its 

twerper (interpolator). Position is trivial, rotation matrices are harder, 

surface geometries are even harder, object collision detection is yet harder, 

etc.  The sophistication of the twerper is generally based on the amount of 

support code available and how much dynamism the operating system can 

provide. 

One way of viewing different levels of tracks is to think of the higher levels 

compiling down to the lower levels. Just as a high level language is com- 

piled down to  a low level language, an abstract track can be compiled 

down to simpler ones. This allows the animator to deal with varying lev- 

els of abstraction, or with animation systems at  different levels in Zeltzer’s 

hierarchy. The unifying element among different tracks with different 

complexities is that the animator has provided certain values at certain 

points in time to control their behaviors. 
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control value could be a pointer to a pro- 

cedure that controls the display function. This procedure would be 

invoked whenever the animation controller determines that it should be 

contributing to the calculation of the animation. This is somewhat analo- 

gous to “buttons” in Cedar [18, 191, which are modules invoked when a 

user clicks a button on the screen. In Cedar, part of the process of instal- 

ling a new button on screen is to tell the window manager what procedure 

to  invoke when the user clicks that button. In the same way, construction 

of these inquisitioe events lets the track manager know what procedure to 

use when evaluation of a track is necessary. This facility is the most 

powerful aspect of event driven animation, as it allows dynamic control of 

the animation, where display function controllers can use the current 

values of other tracks in determining their own values, and thus respond 

to environmental parameters. 

4. twixt 

twizt is integrated into the OSU image generation pipeline [24]. This gives 

the animator a unified environment for dealing with animation and image 

production. 

4.1. Input Methods 

As described previously [7], there are a number of ways to  describe values 

to  twizt. The fancier the display device the user is working, the better 
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these input methods are. Where the input device provides only a limited 

number of inputs (i. e. a bank of control dials), twizt provides ways of 

dynamically changing the assignment of each input device to a control 

mechanism. 

4.2. Layering 

The approach to designing animation in twizt is layering, where the ani- 

mation is built up in layers of motion. Analogies can be drawn to cel ani- 

mation, where a frame is built up of a number of cels lying on top of each 

other. In twizt, however, the layers are not pieces of picture, but pieces of 

mot ion. 

An animator may labor for some time on one particular part of the ani- 

mation, say the arm of a baseball pitcher throwing a ball. Then he may 

switch to the ball and work on that. This might be interspersed with 

quick returns to the arm to perfect some aspect of its motion. It might 

also be interspersed with work on the snap of the pitcher’s head. No com- 

mands are required to switch context; the animator is carrying the con- 

text in his mind, and the naming scheme in twizt allows different ways of 

specifying the context of an action. 

The intent of this approach is that it allows the animator to concentrate 

on one theme for some time, until he is ready to concentrate on another. 

It also allows the animator to instantly return to  any previous activity in 
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order to modify it. This allows quick implementation of flashes, where the 

animator remembers or thinks of something that should be done to a 

sequence already worked on. 

4.3. Objects 

twizt supports the common practice of constructing object hierarchies, i. e. 

of inserting subtrees into trees to express hierarchical relationships. Thus 

a scene is actually made of a forest[lO] of trees. However, the relation- 

ships that can be expressed between nodes cover a broader range than 

that usually available, including operations that cannot be expressed as 

matrix products. A later section will elaborate. 

One nice feature in twizt is the way the animator can rapidly switch data- 

bases. A pragmatic perusal of animation environments shows that few 

animations are designed with graphics hardware that can display 

thousands of vectors in real time. In fact, animators are often working at 

a station that can handle a few vectors in real time. twizt allows the ani- 

mators to dynamically switch the database used to draw an object. Thus 

the animator can have rapidly drawn frames of low complexity or slowly 

drawn frames of high complexity, just by replacing the surface geometry 

definition of an object. All parameters of an object not related to its 

geometry are unaltered by this replacement. 
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On fast graphics hardware this becomes less of a constraint. It will 

decrease in importance in the near future (see final section of notes). 

Objects are named as described in Gomez [7, 81. Two important points 

not mentioned in the paper are regular expressions and aliases. Names can 

contain regular expression characters like the Unix shell and esh; these 

characters are handled just as they would be in either of shell. The user 

can also define alias names, indicating that whenever twixt sees that 

name, it is to be expanded to all the objects named in the list for that 

alias. List elements may of course be regular expressions. Furthermore, it 

is not an error to include an undefined object in an alias list. twixt 

assumes that the animator will bring in that object later, when he is 

ready for it. 
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4.4. Track Implement ation 

twizt implements the following tracks: 

position & d$ / d t  
rotation & G / d t  
scale & & / d t  
attach position & d b  / d t  
color & d t / d t  
shininess & dShininess l d t  
transparency & d Transgarcncy / d t  
surface geometry 
display enable flag 
attachment 
notes 

4.4.1. Basic geometrical transform tracks 

Many of these tracks are straightforward: position, scale, color, illumi- 

nation parameters. Rotation can be treated either as angles around 

the object’s axes or as 3x3 orientation matrices. The former case is 

easy to implement but non-intuitive, meaning that after a few rota- 

tions, it’s hard for the animator to make a direct connection between 

instructing the system to  do a rotation and what happens on the 

screen. This is because the object’s axes are themselves transformed, 

meaning that the rotation is not being applied to the original axes set 

but the transformed set. In the latter case, matrix interpolation was 

implemented using a scheme based on a question from my general 

examinations. This technique has been formalized as quaternion rota- 

tions [15, IS]. 
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In addition, there are velocity tracks running alongside each primary 

track that has a defined derivative (e.g. the position track has a 

derivative but the display enable flag does not). The animator may 

address any track directly, or its derivative, or both. In the latter 

case, the velocity track has priority in any conflicts. 

As an example, consider an animator who specifies that an object’s X 

position is to be 0 at  frame 1 and 20 at frame 24, then specifies that 

the X velocity is to be 10 units per second. This situation is irreconcil- 

able. The decision to  give the velocity track precedence increases the 

likelihood that the display function will be continuous in its deriva- 

tives. 

4.4.2. Hierarchy control tracks 

The attach position is where a child object is attached to its parent, in 

terms of the parent’s coordinate space. There are various ways of 

inserting a subtree into a tree: 

hang 

In this mode, only the offspring’s position is transformed by the 

parent’s matrix; the remainder of the matrix is calculated from 

the child’s current display parameters. The parent’s scale vector 

does not propagate down (see attach below). This mode is 

intended for an object that is hanging on another object, such as 
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a rod hanging on a pivot pin. As the pivot pin moves around, the 

rod must go with it, but it should pivot automatically so it 

remains in the same orientation. 

Implementation is not difficult. To construct the offspring’s 

matrix, first transform it’s final position by its parent’s matrix 

and place the result in the bottom row of the matrix. The upper 

left 3x3 is calculated as usual, with no reference to the parent 

matrix. 

attach 

This mode was defined by s c n  - assmblr: parent scale values do not 

propagate down. It’s useful for attaching light sources to other 

objects, since in the OSU paradigm the scale value of a light 

source determines its range. 

couple 

This is a conventional tree builder, where all elements of the 

parent’s matrix propagate to the offspring nodes. This method 

allows a limited squash-and-stretch capability. 

In actual implementation, twixt constructs matrices in a bottom to top 

fashion. In order to build a frame, each object’s matrix must be con- 

structed. To do this, twidgoes through its list of objects (which 

corresponds to  visiting each leaf in the forest) and finds which of them 
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has their newmatriz flag set, indicating that some display parameter 

has changed, necessitating recalculation of the matrix. It then travels 

recursively up the hierarchy tree until it reaches the root of that object 

subtree, at  which point it unwinds, constructing each object’s matrix 

on the way down $that newmatriz flag is set and concatenating as 

appropriate. No matrix is ever computed twice; the newmatris flag is 

unset to keep that from happening. Thus each node in the tree may 

be visited more than once, but it won’t cause extraneous matrix arith- 

metic. 

There are two ways of removing a subtree from a tree: 

detach 

Detaches a subtree. The child object (and its children) will no 

longer be controlled by the parent. 

letgo 

Detaches a subtree, but maintains the current transformation as a 

pretransformation for future animation. This is used for objects 

which are related to another object for part of the animation, 

then detached to continue own their own way. 

An example would be a hand throwing a ball. Initially, the ball 

would be attached to the hand during the windup. When the ball 

is released, it is “let-go,” so from that point on in time, the hand 
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will have no control over the ball. However, the point at which 

the ball was let go determines its freeflight, so the transformation 

at  that instant must contribute to  the animation following that 

instant . 

The attachment track controls the characteristics of the hierarchy con- 

struction. The attach position track is simply a vector showing the 

attach position. An attachment event simply contains a flag word 

showing what kind of attach (or detach) is to be performed at what 

time. If the event is one of the attaches (as opposed to one of the 

detaches) it also contains a pointer to the new parent. 

4.4.3. Surface geometry track 

This track controls the surface geometry of an object. Object shapes 

are interpolated (with flexibilities previously described) between some 

number of defined geometries. Thus, a blended object has no shape it 

can call it’s own; it is defined only when the animation is running. 

The animator can freeze playback, or play back a single frame, in 

order to take a look at the current surface geometry. Again, to save 

memory, the event value field becomes a pointer to another structure 

that actually defines the characteristics of the actual geometry and 

contains the data itself. 
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4.4.4. Notes track 

Note events are just that - notes. Animators usually write down all 

kinds of information on their exposure sheets. Note events are the 

animator’s notes to themselves. When the animation gets to the 

frame a note event belongs to, the note is printed (the animator can 

set a flag to enable or disable note printing). 

4.5. Track Manipulation 

Geometric transformations can be applied to track segments just as they 

are to objects. Tracks can be scaled, translated, or rotated. These opera- 

tions are different from changing the frame numbers in events; the former 

change the values in the events, the latter change the times at which the 

events occur. Thus the former change the control values themselves; the 

latter change the timing of the animation. 

These track-wise operations are implemented in a simple matter: the ani- 

mator specifies the track segment by frame numbers, the operation, and 

the operand. Rotation must be performed on vector or orientation matrix 

tracks; it does not make sense otherwise. 

A track segment copier is provided. This together with the track 

transformer give the animator instancing capability for a track. Just as 

geometric primitives can be defined and transformed to build more com- 

plex objects, tracks can be defined and transformed to eliminate some of 
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the drudge work of animation. 

As an example, consider a ball bouncing along a mirror. First the anima- 

tor animates one bounce of the ball. Then he copies it two or three times, 

each one shifted by the appropriate time (perhaps two seconds) and the 

appropriate dislocation. This is the original ball animation. Then the ani- 

mator makes a second instance of the ball, copies the first one’s position 

track to the second, and multiplies the second ball’s Y position track by 

-1. This is the reflection’s animation, and the animator is done. Figure 1 

shows value U8. time plots for this animation. 

For a slightly more complex example, suppose the animation was four 

balls and their reflections bouncing away at right angles from a central 

Xsource, Xreflection 

‘’~~~~11,,,,,1, Yreflect ion 

Figure 1. 
Plots of ball and reflection positions 
(2 is not important for this example) 
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point. As before, the animator would animation one ball and its 

reflection (actually, since this is already done, it’s only necessary to read it 

in from the system). Then this duet would be copied and the copy rotated 

90 degrees about the central point. This copy-rotate action is performed 

twice more, for a total of four balls and their reflections bouncing. 

4.6. Record Structures 

Following are record structures showing how various entities are imple- 

mented. The ‘a’ character indicates a pointer. 

4.6.1. Events 

Event structure 

Event Types 
value 

Natural frame 
I Natural I easeIn I 

Figure 2. 

Event record structure 

The vaIue field has no type, because it will depend on what the event 

is being used for. If this structure were being implemented in PAS- 

CAL, the event type field would serve as the CASE selector for a vari- 

ant record. 
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Whether or not the event is a velocity event can be built into the 

event type field or separated into its own field as is shown here. The 

form shown here has some runtime advantages, e.g. if some piece of 

code needs to do something to  a color event, whether it’s a value or a 

velocity value, it can work similar to this: 

if (event.type is Color) 
Doit () 

instead of like this: 

if ((event.type is Color) or (event.type is ColorVelocity)) 
Doit () 

Technically, an event structure would be able to handle any kind of 

display parameter the user desired. Unfortunately, most compilers will 

simply allocate enough space for the worst case. In the case of a sur- 

face geometry definition, it would require a lot of memory. In a global 

context, most of the memory used would be wasted, since most events 

are much shorter than surface geometry definitions. Therefore it makes 

sense to use pointers for events that could take up a lot of memory. 
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I I Twerper I WglobalDTwerper 1 
Figure 3. 

Track record structure 

The event pointers are head pointers, i.e. they point to the heads of 

their respective lists. If a global splining function pointer is non- 

NULL, then the indicated function should always be used for interpo- 

lating that track; otherwise use the patched method as described previ- 

ously. 

An alternative form would be to have a logical flag indicating whether 

or not to  use the global splining function. It’s a matter of taste; either 

way should generate the same number of instructions if the NULL 

pointer is zero, as it is in C. 

4.6.3. Twerpers 

Twerper structure 

String =name 

Figure 4. 

Interpolating function record structure 
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The name is used for display purposes, i.e. for telling the user what the 

name of the function is. It will point to something like “cubic B- 

spline” or “combination move,” etc. The other field points to the code 

implementing that function. It will return whatever’s appropriate, 

typically a floating point blending factor. 

4.6.4. Comments 

The structures shown here are not the actual declarations used in the 

program, although they do indicate the informat ion content required. 

Other fields may be useful for practical purposes. Forward and back- 

ward pointers are a help, as doubly linked list traversal is fast. Addi- 

tional pointers to reduce cross list traversal or avoid indirected lookup 

also save time. Theoretically, they’re not necessary, but faster is 

better . 

Obviously there’s more to writing an animation system than what’s 

discussed here. These concepts, however, form the basis around which 

t w i d  is written. There is a lot more that could be described, but that 

would be outside the scope of these particular notes. Some additional 

references along these lines are my dissertation [9] and the user manual 

PI - 
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5., Epilogue 

An extension to  the idea of modifying tracks is to transform them with modi- 

fying functions, L e .  to filter the display function through time. This would 

be one way of providing character. After designing a walk cycle, the anima- 

tor would apply a modifier to provide a particular kind of walk, e.g. a limp. 

There are analogies between this and the NYIT motion postprocessors and 

Perlin’s pixel stream editor [12]. 

Current developments in fast 3-D raster display systems will not have as 

much of an impact as advanced user capabilities, because fast hardware is 

not the hard problem in computer animation. Animators generally desire to 

see frames of high complexity in full color with advanced surface modeling 

techniques (note that this is different from actual contemporary situations); 

advanced 3-D systems generally work only with polygons and simple illumi- 

nation calculations. The bandwidth required for complex 3-D imagery far 

exceeds the capability of any current or planned hardware system. Thus the 

major advances in computer animation will come not from better display 

units, but from more advanced capabilities available to  the animator. 

Building an  animation system is a nontrivial task. Doing it requires imple- 

mentations of techniques from all aspects of computer science. It’s better to 

view an  animation system as a tool, since its function is to  be used, rather 

than to be an end in itself. Much of the system’s success will come from it’s 

users’ imagination. But it has to  provide them with the appropriate levels of 
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abstraction and the appropriate hierarchy of complexities, where “appropri- 

ate” is the nebulous quantity indicating it’s not overbearing in normal use 

but smart enough to help get the job done. 

Developers and animators must remain in constant contact over the lifetime 

of an animation system; otherwise the it will end up being skewed towards 

the group that built it. The design and development of an animation system 

should be seen as a symbiotic task between the “technical” types and the 

“artist ” types. 
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